If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2+16x-6.5=0
a = 4; b = 16; c = -6.5;
Δ = b2-4ac
Δ = 162-4·4·(-6.5)
Δ = 360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{360}=\sqrt{36*10}=\sqrt{36}*\sqrt{10}=6\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-6\sqrt{10}}{2*4}=\frac{-16-6\sqrt{10}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+6\sqrt{10}}{2*4}=\frac{-16+6\sqrt{10}}{8} $
| x+0.1x=350 | | 3-b=9-3b | | 5x/6-7/4+2x/3=3x-5/12x/3 | | 3(m-4)=2 | | x/12=5/12 | | -(2x^2)+8x-3=0 | | 0.56x^2-5x+0.2=0 | | 9x2-6x=-4 | | 5×8^3n+1=80 | | 3(-2x+1)/3=2x | | 20x+15x=5x | | 2/2-4x8=572 | | 2@2-4x8=572 | | 7x-7x^2=7 | | -7x-8=-13x+40 | | 50=0.06x | | X^2-150x+1250=0 | | 8x/x-2=0 | | 1/4=3/x-1/2 | | 4n+3(n+1)=108 | | (X^2-16)^2-(x-4)^2=0 | | (2x-3)+(x+39)=90 | | 2m-9m+6-7m=8 | | (5a+10)+(3a+10)=90 | | y=0.9(2009+84.3 | | 4+p=1/2 | | 100x^2-4639.36x-6326.4=0 | | 2(x+15)=50 | | x^2-4639.36x-6326.4=0 | | x/3=x+12/2 | | (4u^2+4u-80)/(u^2-12u+32)=0 | | Y=1/1-5x+6x^2 |